3.475 \(\int \frac{g+h x}{(a+b \log (c (d (e+f x)^p)^q))^{3/2}} \, dx\)

Optimal. Leaf size=275 \[ \frac{2 \sqrt{\pi } (e+f x) e^{-\frac{a}{b p q}} (f g-e h) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{1}{p q}} \text{Erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}+\frac{2 \sqrt{2 \pi } h (e+f x)^2 e^{-\frac{2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{2}{p q}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}} \]

[Out]

(2*(f*g - e*h)*Sqrt[Pi]*(e + f*x)*Erfi[Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]]/(Sqrt[b]*Sqrt[p]*Sqrt[q])])/(b^(3/
2)*E^(a/(b*p*q))*f^2*p^(3/2)*q^(3/2)*(c*(d*(e + f*x)^p)^q)^(1/(p*q))) + (2*h*Sqrt[2*Pi]*(e + f*x)^2*Erfi[(Sqrt
[2]*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]])/(Sqrt[b]*Sqrt[p]*Sqrt[q])])/(b^(3/2)*E^((2*a)/(b*p*q))*f^2*p^(3/2)*q
^(3/2)*(c*(d*(e + f*x)^p)^q)^(2/(p*q))) - (2*(e + f*x)*(g + h*x))/(b*f*p*q*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]
])

________________________________________________________________________________________

Rubi [A]  time = 1.01186, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {2400, 2401, 2389, 2300, 2180, 2204, 2390, 2310, 2445} \[ \frac{2 \sqrt{\pi } (e+f x) e^{-\frac{a}{b p q}} (f g-e h) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{1}{p q}} \text{Erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}+\frac{2 \sqrt{2 \pi } h (e+f x)^2 e^{-\frac{2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{2}{p q}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}} \]

Antiderivative was successfully verified.

[In]

Int[(g + h*x)/(a + b*Log[c*(d*(e + f*x)^p)^q])^(3/2),x]

[Out]

(2*(f*g - e*h)*Sqrt[Pi]*(e + f*x)*Erfi[Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]]/(Sqrt[b]*Sqrt[p]*Sqrt[q])])/(b^(3/
2)*E^(a/(b*p*q))*f^2*p^(3/2)*q^(3/2)*(c*(d*(e + f*x)^p)^q)^(1/(p*q))) + (2*h*Sqrt[2*Pi]*(e + f*x)^2*Erfi[(Sqrt
[2]*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]])/(Sqrt[b]*Sqrt[p]*Sqrt[q])])/(b^(3/2)*E^((2*a)/(b*p*q))*f^2*p^(3/2)*q
^(3/2)*(c*(d*(e + f*x)^p)^q)^(2/(p*q))) - (2*(e + f*x)*(g + h*x))/(b*f*p*q*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]
])

Rule 2400

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((
d + e*x)*(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1))/(b*e*n*(p + 1)), x] + (-Dist[(q + 1)/(b*n*(p + 1)), I
nt[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x] + Dist[(q*(e*f - d*g))/(b*e*n*(p + 1)), Int[(f + g*x
)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
0] && LtQ[p, -1] && GtQ[q, 0]

Rule 2401

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2300

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2310

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)*x)/n)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rule 2445

Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Subst[Int[u*(
a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e,
f, m, n, p}, x] &&  !IntegerQ[n] &&  !(EqQ[d, 1] && EqQ[m, 1]) && IntegralFreeQ[IntHide[u*(a + b*Log[c*d^n*(e
+ f*x)^(m*n)])^p, x]]

Rubi steps

\begin{align*} \int \frac{g+h x}{\left (a+b \log \left (c \left (d (e+f x)^p\right )^q\right )\right )^{3/2}} \, dx &=\operatorname{Subst}\left (\int \frac{g+h x}{\left (a+b \log \left (c d^q (e+f x)^{p q}\right )\right )^{3/2}} \, dx,c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{4 \int \frac{g+h x}{\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}} \, dx}{b p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname{Subst}\left (\frac{(2 (f g-e h)) \int \frac{1}{\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{4 \int \left (\frac{f g-e h}{f \sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}}+\frac{h (e+f x)}{f \sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}}\right ) \, dx}{b p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname{Subst}\left (\frac{(2 (f g-e h)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b \log \left (c d^q x^{p q}\right )}} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{(4 h) \int \frac{e+f x}{\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname{Subst}\left (\frac{(4 (f g-e h)) \int \frac{1}{\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}} \, dx}{b f p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname{Subst}\left (\frac{\left (2 (f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac{1}{p q}}\right ) \operatorname{Subst}\left (\int \frac{e^{\frac{x}{p q}}}{\sqrt{a+b x}} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{(4 h) \operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b \log \left (c d^q x^{p q}\right )}} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname{Subst}\left (\frac{(4 (f g-e h)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b \log \left (c d^q x^{p q}\right )}} \, dx,x,e+f x\right )}{b f^2 p q},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )-\operatorname{Subst}\left (\frac{\left (4 (f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac{1}{p q}}\right ) \operatorname{Subst}\left (\int e^{-\frac{a}{b p q}+\frac{x^2}{b p q}} \, dx,x,\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}\right )}{b^2 f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 e^{-\frac{a}{b p q}} (f g-e h) \sqrt{\pi } (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{1}{p q}} \text{erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{\left (4 h (e+f x)^2 \left (c d^q (e+f x)^{p q}\right )^{-\frac{2}{p q}}\right ) \operatorname{Subst}\left (\int \frac{e^{\frac{2 x}{p q}}}{\sqrt{a+b x}} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname{Subst}\left (\frac{\left (4 (f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac{1}{p q}}\right ) \operatorname{Subst}\left (\int \frac{e^{\frac{x}{p q}}}{\sqrt{a+b x}} \, dx,x,\log \left (c d^q (e+f x)^{p q}\right )\right )}{b f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=-\frac{2 e^{-\frac{a}{b p q}} (f g-e h) \sqrt{\pi } (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{1}{p q}} \text{erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}+\operatorname{Subst}\left (\frac{\left (8 h (e+f x)^2 \left (c d^q (e+f x)^{p q}\right )^{-\frac{2}{p q}}\right ) \operatorname{Subst}\left (\int e^{-\frac{2 a}{b p q}+\frac{2 x^2}{b p q}} \, dx,x,\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}\right )}{b^2 f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )+\operatorname{Subst}\left (\frac{\left (8 (f g-e h) (e+f x) \left (c d^q (e+f x)^{p q}\right )^{-\frac{1}{p q}}\right ) \operatorname{Subst}\left (\int e^{-\frac{a}{b p q}+\frac{x^2}{b p q}} \, dx,x,\sqrt{a+b \log \left (c d^q (e+f x)^{p q}\right )}\right )}{b^2 f^2 p^2 q^2},c d^q (e+f x)^{p q},c \left (d (e+f x)^p\right )^q\right )\\ &=\frac{2 e^{-\frac{a}{b p q}} (f g-e h) \sqrt{\pi } (e+f x) \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{1}{p q}} \text{erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}+\frac{2 e^{-\frac{2 a}{b p q}} h \sqrt{2 \pi } (e+f x)^2 \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{2}{p q}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )}{b^{3/2} f^2 p^{3/2} q^{3/2}}-\frac{2 (e+f x) (g+h x)}{b f p q \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}\\ \end{align*}

Mathematica [A]  time = 1.34486, size = 435, normalized size = 1.58 \[ \frac{2 (e+f x) e^{-\frac{2 a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{-\frac{2}{p q}} \left (\sqrt{b} \sqrt{p} \sqrt{q} e^{\frac{a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{\frac{1}{p q}} \left ((e h+f g) \sqrt{-\frac{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}{b p q}\right )-f (g+h x) e^{\frac{a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{\frac{1}{p q}}\right )-2 \sqrt{\pi } e h e^{\frac{a}{b p q}} \left (c \left (d (e+f x)^p\right )^q\right )^{\frac{1}{p q}} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )} \text{Erfi}\left (\frac{\sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )+\sqrt{2 \pi } h (e+f x) \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}}{\sqrt{b} \sqrt{p} \sqrt{q}}\right )\right )}{b^{3/2} f^2 p^{3/2} q^{3/2} \sqrt{a+b \log \left (c \left (d (e+f x)^p\right )^q\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g + h*x)/(a + b*Log[c*(d*(e + f*x)^p)^q])^(3/2),x]

[Out]

(2*(e + f*x)*(-2*e*E^(a/(b*p*q))*h*Sqrt[Pi]*(c*(d*(e + f*x)^p)^q)^(1/(p*q))*Erfi[Sqrt[a + b*Log[c*(d*(e + f*x)
^p)^q]]/(Sqrt[b]*Sqrt[p]*Sqrt[q])]*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]] + h*Sqrt[2*Pi]*(e + f*x)*Erfi[(Sqrt[2]
*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]])/(Sqrt[b]*Sqrt[p]*Sqrt[q])]*Sqrt[a + b*Log[c*(d*(e + f*x)^p)^q]] + Sqrt[
b]*E^(a/(b*p*q))*Sqrt[p]*Sqrt[q]*(c*(d*(e + f*x)^p)^q)^(1/(p*q))*(-(E^(a/(b*p*q))*f*(c*(d*(e + f*x)^p)^q)^(1/(
p*q))*(g + h*x)) + (f*g + e*h)*Gamma[1/2, -((a + b*Log[c*(d*(e + f*x)^p)^q])/(b*p*q))]*Sqrt[-((a + b*Log[c*(d*
(e + f*x)^p)^q])/(b*p*q))])))/(b^(3/2)*E^((2*a)/(b*p*q))*f^2*p^(3/2)*q^(3/2)*(c*(d*(e + f*x)^p)^q)^(2/(p*q))*S
qrt[a + b*Log[c*(d*(e + f*x)^p)^q]])

________________________________________________________________________________________

Maple [F]  time = 0.263, size = 0, normalized size = 0. \begin{align*} \int{(hx+g) \left ( a+b\ln \left ( c \left ( d \left ( fx+e \right ) ^{p} \right ) ^{q} \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((h*x+g)/(a+b*ln(c*(d*(f*x+e)^p)^q))^(3/2),x)

[Out]

int((h*x+g)/(a+b*ln(c*(d*(f*x+e)^p)^q))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{h x + g}{{\left (b \log \left (\left ({\left (f x + e\right )}^{p} d\right )^{q} c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^(3/2),x, algorithm="maxima")

[Out]

integrate((h*x + g)/(b*log(((f*x + e)^p*d)^q*c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{g + h x}{\left (a + b \log{\left (c \left (d \left (e + f x\right )^{p}\right )^{q} \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*ln(c*(d*(f*x+e)**p)**q))**(3/2),x)

[Out]

Integral((g + h*x)/(a + b*log(c*(d*(e + f*x)**p)**q))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{h x + g}{{\left (b \log \left (\left ({\left (f x + e\right )}^{p} d\right )^{q} c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((h*x+g)/(a+b*log(c*(d*(f*x+e)^p)^q))^(3/2),x, algorithm="giac")

[Out]

integrate((h*x + g)/(b*log(((f*x + e)^p*d)^q*c) + a)^(3/2), x)